If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-y^2+84y-923=0
We add all the numbers together, and all the variables
-1y^2+84y-923=0
a = -1; b = 84; c = -923;
Δ = b2-4ac
Δ = 842-4·(-1)·(-923)
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-58}{2*-1}=\frac{-142}{-2} =+71 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+58}{2*-1}=\frac{-26}{-2} =+13 $
| 17x=28x+80 | | 60=3/4x | | 3(x+2)=68 | | 11x-71=7x-31 | | 3x(x+2)=68 | | 3x-27+14x=78 | | 27-30x=70 | | 3x2+x=68 | | y^2+18y-1075=0 | | -3(x–4)=42 | | 1.5+1.5a=21 | | 8^x=0.7 | | 10−3f=7 | | x=(x^2-6x-16)x=(x-7) | | 3(x+3)-x=2(x-1)+3 | | 18x-9=-9 | | 2p^2+16p=0 | | y^2+5y-126=0 | | (√2n+5)=n+1 | | 0,5x=480 | | y^2+5y-1113=0 | | x+18=x*3 | | a/8=24 | | -4+6k=14 | | 4x2-5x-10=0 | | 4(−15−3p)=−4(−p+5) | | (4x-5)(x+1)=8 | | 74y-y^2-1113=0 | | 10^x=1/x | | 6(x-6)=(x+3) | | 10=5b25 | | 51y-y^2-518=0 |